These are public posts tagged with #explainpaper. You can interact with them if you have an account anywhere in the fediverse.
Explainpaper - Comprehend complex research papers with AI
With #Explainpaper you can upload a paper, highlight confusing text, and get an explanation. The #AI model uses #GPT3 to simplify and explain complex concepts. It is trained on various fields of study such as #computerscience, #Biology , or #economics.
Free and paid plans are available. Signup is required. The article also mentions alternative tools.
How Mitochondrial Dynamism Orchestrates Mitophagy
Orian S. Shirihai, Moshi Song, Gerald W. Dorn II
Understanding the Significance of Mitochondrial Fission and Fusion
Mitochondrial dynamics refers to the movement of #mitochondria within a cell. This includes #fission, which is when mitochondria divide into two parts, #fusion, which is when two mitochondria join together, and #translocation, which is when mitochondria move from one part of the #cell to another.
How Mitochondrial Dynamism Orchestrates Mitophagy
Authors Orian S. Shirihai, Moshi Song, Gerald W. Dorn II
Understanding the Significance of Mitochondrial Fission and Fusion
Mitochondrial dynamics refers to the movement of #mitochondria within a cell. This includes #fission, which is when mitochondria divide into two parts, #fusion, which is when two mitochondria join together, and #translocation, which is when mitochondria move from one part of the #cell to another. This movement is important for maintaining the stability of the mitochondrial #DNA, which is the genetic material found in mitochondria, and for controlling the cell's #respiration. It can also be involved in programmed #CellDeath. In the #heart, mitochondrial dynamics #protein s, such as #mitofusin s, optic #atrophy, and dynamin-related protein, are highly expressed and play an important role in maintaining the quality of the #mitochondria. Other roles for mitochondrial dynamics proteins in the #heart include helping to move #calcium into the mitochondria and regulating the structure of the mitochondria.
#Mitochondria are organelles in cells that are responsible for producing #energy. They can change their structure by breaking apart (#fission) and reforming (#fusion). This process is complicated and energy intensive, so it is important to understand why it is necessary. One reason may be that when cells divide, the mitochondria need to be divided equally between the two daughter cells. This requires the #mitochondria to be broken apart and then reformed in each daughter #cell. This process of breaking apart and reforming is more efficient than growing and budding the mitochondria. To help explain this process, the authors use the analogy of an army. Each soldier in the army is like a protein in the mitochondria, and the different units of the army are like the different parts of the #mitochondria. To increase the size of the army, units are added, rather than individual soldiers. This is similar to how mitochondria are modified, by adding or subtracting intact functional units, rather than individual #protein s.
Mitochondria are #organelle s in cells that can change their physical structure by undergoing fission. Fission can be symmetrical, which is when mitochondria replicate and expand the number of #mitochondria in the #cell, or asymmetrical, which is when damaged components of the mitochondria are removed. The major #protein that helps with mitochondrial fission is called Drp1. It is mostly found in the #cytosol, but it needs to be recruited to the outer mitochondrial #membrane to help with fission. Different factors can cause Drp1 to be recruited, such as phosphorylation by mitotic kinase cyclin B–cyclin-dependent-kinase (cdk) 1 complex during #cell division, or interacting with Bcl-2–associated protein x during #apoptosis. Inhibiting Drp1 can protect cells from some, but not all, forms of programmed cell death.
Mitochondria, which are organelles in cells, can be partitioned in #mitosis. The most efficient way to do this is by dismantling and then reconstituting the cellular #mitochondria network through sequential #organelle fission, distribution, and refusion. To explain this concept, the text uses an analogy of how military units are constituted and managed within an army's hierarchical organization structure. In this analogy, each soldier represents an individual respiratory complex #protein, which are grouped together to form a squad (analogous to a respiratory complex). Squads are arranged into platoons, and approximately 6 platoons comprise a functional unit, the company (like 1 complete respiratory chain). The text suggests that it would be easier to add prefabricated supercomplexes to preexisting ones, as by fusing mitochondrial cristae, rather than trying to make a larger or different shaped mitochondrion through the wholesale incorporation of individual proteins. This is because making major structural modifications of respiratory supercomplexes on paracrystalline cristal membranes would first require destabilizing the #membrane, then incorporating additional individual #protein components, and finally reconstructing the original highly organized structure, which is complicated and potentially disruptive.
#Mitochondria are small organelles in cells that can change their physical structure by undergoing fission. Fission can be symmetrical, which means the #mitochondria are split into two equal parts, or asymmetrical, which means the mitochondria are split into two unequal parts. Symmetrical fission is used to replicate and expand the number of mitochondria in the #cell, while asymmetrical fission is used to remove damaged mitochondria from the cell. The major #protein responsible for mitochondrial fission is called Drp1. Drp1 is mostly found in the cytosol, but it needs to be recruited to the outer mitochondrial #membrane to promote fission. Different factors can stimulate Drp1 to move to the outer mitochondrial #membrane, such as phosphorylation by mitotic kinase cyclin B–cyclin-dependent-kinase (cdk) 1 complex. In addition, the endoplasmic reticulum (ER) is often found at the sites of mitochondrial fission. If Drp1 is not present, the mitochondria can still fragment during #mitosis, suggesting that there are other mechanisms that can promote mitochondrial fission.
The text is talking about the process of mitochondrial fission, which is a process that involves connecting and separating parts of a #mitochondria. The author uses the metaphor of making sausage links to explain the process, but then goes on to explain that mitochondria are actually more like a turducken, which is a dish made of a chicken stuffed inside a duck stuffed inside a turkey. This creates layers of poultry, which is similar to the double #membrane /double space structure of #mitochondria. The author then explains that the process of mitochondrial fusion involves connecting the two mitochondria layer by layer, using proteins called mitofusins. Mitofusins have a #GTPase domain, two hydrophobic heptad repeat coiled-coil domains, and a small hydrophobic transmembrane domain. These proteins insert into the outer #membrane of the #mitochondria, and can interact with other proteins in the cytosol. The process of mitochondrial fusion is GTP-independent and reversible, but #GTP #hydrolysis is essential for irreversible outer membrane fusion.
#Mitofusins are proteins that are essential for the first two stages of mitochondrial fusion, which is the process of two mitochondria joining together. This process is important for the exchange of information between the #mitochondria and the #cell. If the mitofusins are deleted or suppressed, the mitochondria become abnormally small and are unable to undergo normal fusion. This can have serious implications for the health of the #cell.
Membrane-by-membrane mitochondrial fusion is a process that helps to keep the structure of the inner and outer membranes of #mitochondria intact. This helps to preserve the process of oxidative phosphorylation, which is important for providing energy to cells. Without this process, molecules that can be toxic to cells can form and interrupt the electron transport chain. This process is also important for maintaining the normal shape of the crista, which is necessary for the proper assembly and functioning of electron transport chain supercomplexes. In addition, it has been shown that interrupting Mfn-mediated OMM fusion can cause a #cardiomyocyte ER stress response, while interrupting Opa1-mediated IMM fusion can compromise mitochondrial function.
Mitochondrial fission and fusion are important processes in #biology, as evidenced by the fact that mutations in genes related to these processes can cause serious diseases in humans. Altering the balance between fission and fusion can have an effect on the shape of #mitochondria, with more fusion leading to longer, more interconnected mitochondria, and more fission leading to shorter, less interconnected mitochondria. It is generally thought that more interconnected #mitochondria are healthier, but this is not always the case. In some cases, mitochondrial #fragmentation can be beneficial, and it is important to understand the interplay between mitochondrial fragmentation and other processes, such as #mitophagy, in order to understand the effects of mitochondrial fission and fusion.
Mitophagy is a process by which cells eat their own #mitochondria. Mitochondria are organelles that produce energy in the form of #ATP, which is used to power most biological processes. Over time, mitochondria can become damaged and produce toxic levels of reactive oxygen species ( #ROS ). To protect the #cell from this damage, it has developed a sophisticated system to identify and remove these dysfunctional #mitochondria. This process is called mitophagy. #Mitophagy is a combination of the words mitochondria and #autophagy, which means "self-eating". It is a way for cells to selectively target and remove damaged mitochondria, while still keeping healthy ones. This helps to maintain the balance between having enough energy-producing #mitochondria and getting rid of the ones that are no longer functioning properly.
Pulse chase experiments are a type of scientific experiment used to study the behavior of molecules over time. In this particular experiment, researchers found that when #mitochondria (the energy-producing organelles in cells) are targeted for #mitophagy (a process of removing damaged mitochondria from the cell), they have a relatively depolarized #membrane potential before being removed. This means that the #mitochondria have a lower electrical charge than normal, and they are less likely to be involved in #fusion events (when two mitochondria join together). The time between the mitochondria becoming depolarized and being removed from the cell can range from less than an hour to about three hours, suggesting that there is a population of preautophagic #mitochondria (mitochondria that are about to be removed). This #preautophagic pool helps to explain the variation in mitochondrial #membrane potential in different cell types. The process that feeds mitochondria into the preautophagic pool is important for determining how quickly #mitochondria are removed from the #cell. Scientists have developed a technology to label individual mitochondria and track their #membrane potential, which has allowed them to identify the event at which depolarized #mitochondria are produced. This event is called asymmetrical fission, and it occurs when the daughter mitochondria produced by the fission event have different #membrane potentials - one daughter has a higher membrane potential than the mother mitochondrion, while the other daughter has a lower membrane potential. This process of asymmetrical fission helps to separate damaged components from healthy components before they are removed from the #cell.
The concept of mitochondrial fission and fusion and how it affects mitochondrial quality. It suggests that when the fusion factors Mfn1 and Mfn2 are both absent, unusually small and degenerated #mitochondria accumulate in adult mouse hearts. This was associated with impaired #cardiomyocyte respiration, but not with measurable alterations in #oxygen consumption. It was later discovered that the isolation procedure used was not capturing the fragmented #mitochondria produced by interrupting mitochondrial fusion. This led to the discovery that Mfn2 is essential to #Parkin-mediated #mitophagy, which is a process that helps to maintain mitochondrial quality. Three recent papers have also implicated the mitochondrial fission protein Drp1 in cardiac #mitophagy, and it is suggested that if asymmetrical mitochondrial fission normally precedes mitophagy, then chronic suppression of fission by ablating Drp1 would have different consequences on #mitophagy depending on when it is assayed.
Mfn2 and PINK1–Parkin Mitophagy Signaling is a mechanism for controlling the quality of #mitochondria in the body. #PINK1 and #Parkin are proteins that are linked to #Parkinson's disease, and mutations in their genes were the first to be identified as causing the disease. Scientists have studied how PINK1 interacts with Parkin, and how this interaction can lead to the destruction of damaged #mitochondria, which is called #mitophagy. #PINK1 is like an ignition switch that senses when mitochondrial damage has occurred, and then activates Parkin-mediated mitophagy. PINK1 is normally not present in healthy #mitochondria, but when mitochondrial damage occurs, PINK1 accumulates and triggers the destruction of the damaged #mitochondria.
PINK1 is a protein that accumulates on damaged mitochondria and helps to promote mitophagy, which is the process of getting rid of damaged mitochondria. PINK1 does this by inducing the cytosolic protein Parkin to move to the mitochondria and ubiquitinate proteins on the outer membrane of the mitochondria. This helps to prevent the spread of damage from the damaged mitochondria to the healthy ones. PINK1 also inhibits the fusion of the damaged mitochondria. There are different theories about the biochemical events that cause Parkin to move to the mitochondria and stop the fusion. It is thought that PINK1 phosphorylates Parkin on certain sites, which helps Parkin bind to the mitochondria. It is also thought that PINK1 phosphorylates ubiquitin, which helps Parkin bind to the mitochondria and ubiquitinate proteins on the outer membrane. Finally, it is thought that PINK1 phosphorylates Mfn2, which helps Parkin bind to the mitochondria and ubiquitinate proteins on the outer membrane. All of these processes help to promote mitophagy and prevent the spread of damage from the damaged mitochondria to the healthy ones.
#PINK1 is a protein that plays an important role in a process called #mitophagy, which is a form of quality control for mitochondria. Mutations in the #PINK1 #gene have been linked to hereditary #Parkinson's disease in humans, but when the PINK1 gene is deleted in mice, it does not cause the same #neurodegenerative pattern seen in humans. Even when the genes for PINK1, Parkin, and DJ-1 are all deleted in mice, it still does not cause the same loss of dopaminergic #neuron s seen in #Parkinson's disease patients. This suggests that there may be other pathways that can compensate for the loss of #PINK1 and #Parkin, such as increased transcription of other E3 #ubiquitin ligases in the hearts of Parkin-knockout mice.
The text is discussing the idea of mitochondrial quality control pathways, which are processes that help keep mitochondria healthy. The text is suggesting that there may be alternate pathways that can be used to maintain mitochondrial health, rather than waiting until the mitochondria are completely depolarized before triggering their removal. It is comparing this idea to the idea of maintaining a car, where it is better to perform regular maintenance and repairs rather than waiting until the car is completely broken down before replacing it.
Like a car, mitochondria can be maintained through preventative maintenance, such as replacing worn parts, and that more serious damage can be repaired by removing and replacing individual components. It also suggests that, like a car, #mitochondria can be repaired by removing and replacing damaged parts, but on a smaller scale. The different types of maintenance and repair may be part of a continuum, rather than distinct categories.
#Mitophagy and mitochondrial dynamism are two processes that are closely connected. Mitophagy is the process of removing damaged #mitochondria from the #cell, while mitochondrial dynamism is the process of mitochondria fusing together and separating. The two processes work together to keep the cell healthy by eliminating damaged mitochondria and preventing healthy mitochondria from being contaminated by the damaged ones. The protein #Mfn2 plays a role in both processes, acting as a factor for mitochondrial fusion when it is not acted on by #PINK1 and as a receptor for #Parkin when it is. This suggests that the two processes are mutually exclusive, meaning that they cannot happen at the same time. This helps to protect healthy #mitochondria from being contaminated by the damaged ones. Finally, the involvement of PINK1 and Parkin in multiple mitochondrial quality control mechanisms shows that there are multiple ways to keep the #mitochondria healthy, which is important for preventing chronic degenerative diseases and providing opportunities for #therapeutic intervention.
Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients
Niels Halama, Inka Zoernig, Anna Berthel, Christoph Kahlert, Fee Klupp, Meggy Suarez-Carmona,Thomas Suetterlin, Karsten Brand, Juergen Krauss, Felix Lasitschka, Tina Lerchl, ... , Laurence Zitvogel,
Thomas Herrmann, Axel Benner, Christina Kunz, Stephan Luecke, Christoph Springfeld, Niels Grabe, Christine S. Falk, and Dirk Jaeger
Using Human Pluripotent Stem Cells to Create Human Skeletal Muscle Organoids for Repair and Regeneration
Skeletal #muscle is a type of tissue that makes up a large part of the human body. It is made up of many different cells that are able to contract and move. Skeletal muscle has the ability to #repair itself when it is damaged due to #aging, exercise, or diseases like #MuscularDystrophy. A small group of cells called #SatelliteCell s help with the repair process. Scientists have been trying to create models to study how #Skeletalmuscle develops and regenerates. Recently, they have been using human pluripotent #StemCell to create 3D models of skeletal muscle tissue. However, these models have not been able to recreate the full process of muscle regeneration. In this research paper, the authors introduce a new method of using human pluripotent stem cells to create 3D models of skeletal muscle tissue that can retain the ability to repair itself.
Over the past decades, scientists have used #animalmodel to study #muscleregeneration, which is regulated by #stemcell s. These animal models have been very helpful in understanding the mechanisms of muscle #regeneration, but they don't always accurately reflect the same range of diseases that humans experience. Therefore, researchers have suggested creating reliable in vitro models using human muscle cells. ( #hPSC s) could be used to create 3D human skeletal muscle #organoid s ( #hSkMO s) that contain sustainable #stemcell and distinct myofibers with the same proteins and structure as adult muscles. Previous approaches to skeletal muscle differentiation have been developed using 2D #culture systems, but these lack the natural environment and #StemCell niche that are necessary to model adult #myogenesis and muscle #regeneration.
#Stemcell s ( #SC s) can be used to repair damaged muscle tissue. They explain that SCs can be activated in response to muscle injuries and that other #cell types can contribute to the process of #myogenesis. The author then goes on to explain that #cytokine s, such as IL-4, can influence the #InflammatorySystem and promote SCs differentiation, which helps with muscle regeneration. While #organoid s generated from #hPSC s have potential, they do not fully replicate the in vivo native microenvironment. To address this, treat the #hSkMO s with extrinsic #cytokine s to promote #muscle #regeneration . #hSkMO s might then be used to study aspects of human muscle #biology and to identify novel #therapeutic candidates for muscle-wasting disorders.
To create a 3D structure of muscle tissue. They used #WNT activator and #BMP inhibitors at the beginning of the differentiation process to induce paraxial #mesodermal #cell s. They then added #FGF2 to the Matrigel to promote the 3D structure. #HGF and IGF1 were added later to accelerate the #myogenic specification and further #myofiber differentiation. They optimized the timing of the Matrigel embedding to day seven. After this, they observed #neuralcell s and withdrew FGF2 to focus on muscle tissue development. They then prolonged the HGF and IGF1 treatment to propagate #myogenic #progenitor s. They found that 62% of the #tissue was #skeletalmuscle tissue and that it contained PAX7+ #myogenic #stem / #progenitor cells, MYOD+ activated/committed #myoblast s, and MYOG+ #myocyte s. They also found that 31% of PAX7+/Ki67− and 29% of MYOD−/PAX7+ non-dividing quiescent SCs were present in the mature #hSkMO s. This indicates that the #hSkMO s were able to effectively recreate #embryo nic #myogenesis and have regenerative potential. Future studies using #singlecell #RNA sequencing may be necessary to further characterize the different types of cells in #hSkMO s.
The stepwise process to generate human skeletal muscle organoid s (hSkMOs) from human pluripotent stem cells (hPSCs)
The process begins with dissociating #hPSC s into #singlecell s and allowing them to form #embryoid bodies ( #EB s) in low-attachment V-shaped 96-well plates. Then, paraxial #mesodermal differentiation is promoted with #WNT activation, BMP inhibition, and FGF2 signaling. The expression of pluripotency markers OCT4 and NANOG decreases, and the expression of #mesoderm markers Brachyury, T-Box transcription factor 6 (TBX6), and mesogenin 1 (MSGN1) increases. To further characterize paraxial #mesoderm al differentiation, TBX6 is #immunostain ed. After paraxial #mesodermal induction, the #organoid s are embedded with growth factor-reduced Matrigel and transferred to a six-well plate on an orbital shaker. Growth factors are then added to the #myogenic specification media, and #hSkMO s are cultured until the day of analysis. The orbital shaker improves the viability, survival, and differentiation of hSkMOs by increasing the penetration rate of oxygen and nutrients into the core area of hSkMOs. The #hSkMOs gradually grow to more than 1.5 mm in diameter by day 60, appearing round-shaped, uniformly sized, and having relatively homogenous morphology. PAX3 and PAX7 are #myogenic progenitor markers, and their expression is verified by qRT-PCR and #cryo sections. The #myogenic cells appear as clusters, and approximately 9% of PAX7+ cells are double-positive for Ki67 at day 30, demonstrating that proliferating cells are #myogenic #progenitor s in hSkMOs. This indicates that the in vitro #hSkMO #culturesystem is able to recapitulate the features of embryonic skeletal #muscle development.
The different types of #SkeletalMuscle stem/progenitor cells that are involved in myogenesis, the process of muscle formation.
The researchers used qRT-PCR analysis and #immunohistochemistry to identify and characterize the different types of cells. They found that PAX3 and PAX7 (SC markers) were the major population during the early stage of #myogenesis, and that MYOD (proliferating and activated SC marker) and MYOG (differentiated myocyte marker) increased over time. They also observed that MYOD−/PAX7+, MYOD+/PAX7+, and MYOD+/Ki67+ cells accounted for 29%, 6%, and 8% of the putative quiescent, activated, and proliferating #SC s, respectively. MYOD+/PAX7− cells constituted 39% of differentiating myoblasts, and MYOG−/PAX7+ cells constituted 23% of putative quiescent SCs. MYOG+/PAX7− cells accounted for 30% of differentiated #myocyte s, and 8% and 6% of the MYOG+ cells in #hSkMO s co-expressed PAX7 and Ki67, respectively. This data shows that the researchers were able to identify and characterize different types of skeletal muscle stem/progenitor cells during #myogenesis.
The text is discussing the results of a research study that used hSkMOs (human skeletal muscle #organoid s) to study the development of skeletal muscle #tissue. The study found that the #hSkMO s grew exponentially in size within two months, and the growth rate then steadily decreased. The researchers then used scanning electron microscopy (SEM) imaging and confocal microscopy to examine the cytoarchitecture of the hSkMOs. They found that the hSkMOs contained a large population of terminally differentiated #myogenic cells and a small population of preserved myogenic stem/progenitor cells. They also found that the hSkMOs contained a substantial proportion of TITIN+ muscle cells and MAP2-positive #neuron s. To further characterize the presence of sustainable stem cells within the mature hSkMOs, they quantified the amount of dormant stem cells by #confocal #microscopy imaging. The results showed that approximately 56%, 31%, and 5% of PAX7+/Ki67- putative dormant stem cells existed throughout the differentiation of hSkMOs at days 30, 70, and 130, respectively. This indicates that the hSkMOs contained mature skeletal muscle properties and had the potential for #regeneration .
The researchers wanted to see if the #hSkMO s (human #skeletal muscle #organoid s) had the ability to regenerate #muscle #tissue after damage. To test this, they treated the hSkMOs with a cardiotoxin (CTX) which is known to induce muscle inflammation and damage. They then observed a decrease in PAX7+ and MYOD+ cells in the hSkMOs. To further test the #regenerative potential of the #hSkMO s, they added interleukin-4 (IL-4) to the medium to promote #muscleregeneration. After 14 days, they observed a significant increase in MYOG+ myocytes in the CTX-injured hSkMOs with the treatment of IL-4 compared to the CTX-injured hSkMOs without the treatment. This suggests that the hSkMOs have the potential to regenerate muscle tissue after damage.
Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration
Authors :
Min-Kyoung Shin , Jin Seok Bang , Jeoung Eun Lee , Hoang-Dai Tran , Genehong Park , Dong Ryul Lee and Junghyun Jo
It was also found that calcium and pyrophosphate were key factors involved in the PPi-mediated catabolic response, and that CPPD crystals could potentially be endocytosed and elicit changes through a MAPK-dependent pathway.
The Therapeutic Potential of Exogenous Adenosine Triphosphate (ATP) for Cartilage Tissue Engineering
authors : Jenna Usprech , Gavin Chu , Renata Giardini-Rosa , Kathleen Martin , and Stephen D. Waldman
#Articular #cartilage, which is a type of #tissue found in #joints, allows for nearly frictionless motion and can absorb large loads. Unfortunately, when it is damaged, it cannot repair itself. #Tissueengineering is a promising approach to repair the damage, but it falls short of creating functional tissue. This is because the tissue-engineered constructs do not have the same mechanical properties as native articular cartilage, which is due to the insufficient accumulation of #extracellular matrix components. To address this, researchers have been exploring the use of adenosine triphosphate (#ATP) to directly harness the underlying mechanotransduction pathways responsible. ATP is a molecule that is released as a result of mechanical stimulation and acts as an autocrine/paracrine signaling #molecule. It acts on P2 receptors on the #plasma #membrane to promote extracellular matrix #synthesis. However, high doses of ATP can lead to an increase in matrix #metalloproteinase 13 (MMP-13) activity and extracellular inorganic pyrophosphate (ePPi) accumulation, which can lead to undesirable effects such as #mineralization of articular cartilage. Therefore, the purpose of this study is to identify the mechanism of ATP-mediated #catabolism and to determine a therapeutic dose range to maximize the #anabolic effect.
Materials & Methods
Cell Isolation: This is the process of separating cells from a tissue sample. It is usually done using #enzymes to break down the tissue and then filtering the cells out.
3-Dimensional Culture: This is a type of #cellculture where the cells are grown in a three-dimensional environment, rather than in a flat layer. This allows the cells to interact with each other in a more natural way.
Exogenous ATP Supplementation: ATP (adenosine triphosphate) is a molecule that is important for energy production in cells. Exogenous ATP supplementation is the process of adding ATP to the cell culture from an outside source. This can help the cells to grow and function better.
MMP-13 Protein Activity is a type of protein that is found inside cells. It was extracted from 3-D cultured constructs and then frozen and pulverized. It was then homogenized in a buffer solution with a protease inhibitor. After that, it was centrifuged and stored at a low temperature. To measure the amount of active MMP-13, a FRET-based assay was used. This assay uses a fluorophore and quencher to measure the amount of MMP-13 that is present. To measure the amount of ECM synthesis, a range of exogenous ATP doses were used. To measure the effect of PPi on MMP-13 activity, chondrocyte monolayer cultures were established and PPi was added to the cultures. To investigate the underlying mechanisms, inhibitors were added to the cultures. Finally, Transmission Electron #Microscopy (TEM) was used to determine the presence of CPPD #crystal accumulation in the engineered tissue constructs. Statistical analyses were then used to analyze the collected data.
The researchers found that when they added ATP to the cultures, MMP-13 activity increased in a dose-dependent manner. This means that the more ATP they added, the more MMP-13 activity increased. They also found that the levels of PPi in the media increased significantly when they added a high dose of ATP, but the levels of PPi in the tissue did not appear to be affected. To determine the best dose of ATP to use, the researchers tested a range of doses and measured the effects on ECM synthesis (collagen and proteoglycans) and MMP-13 activity. They found that ECM synthesis and MMP-13 activity increased in response to intermediate doses of ATP, and further increased in response to higher doses of ATP.
In this study, the researchers wanted to see if they could use ATP to improve tissue growth and mechanical properties without the need for mechanical loading. They found that while high doses of ATP (250 μM) had a positive effect, it also caused a catabolic response, which is when the tissue breaks down. To find the optimal dose of ATP, the researchers tested different doses (31.25, 62.5, and 125 μM) to see which one had the best effect on tissue growth and mechanical properties without causing a catabolic response.
#Calcium is an important factor in the ATP-mediated catabolism process. The researchers found that when they added 10 μM PPi to #chondrocyte cultures, there was a 32% increase in MMP-13 activity compared to unstimulated controls. This effect appeared to require calcium and could be inhibited by the MEK1/2 inhibitor U0126. Additionally, TEM imaging was conducted on engineered cartilaginous tissues supplemented with 0, 62.5 and 250 μM ATP but no mineralization or CPPD crystals were observed which suggests that these doses of ATP did not cause any catabolic response due to crystal formation.
The text is discussing a method of improving tissue growth and mechanical properties of engineered cartilage constructs by applying mechanical loading. However, this approach has limitations when dealing with irregular geometry and high radii of curvature. An alternative approach is to use the known mechanotransduction pathways responsible to achieve the same effect without externally applied forces. In a recent study, it was demonstrated that direct stimulation of the ATP-purinergic receptor pathway through exogenous supplementation of ATP can elicit a comparable anabolic response and be used to improve both tissue growth and mechanical properties of the developed tissue. However, high doses of ATP (250 μM) resulted in a simultaneous catabolic response characterized by an increase in MMP-13 expression, potentially due to the accumulation of ePPi. The present study determined a therapeutic dose range of exogenous ATP to maximize the anabolic response and minimize the catabolic effect of exogenous ATP. It was found that the dose range of ATP between 62.5 and 125 μM was optimal for maximizing the anabolic effect and minimizing the catabolic effect of exogenous ATP. It was also found that calcium and pyrophosphate were key factors involved in the PPi-mediated catabolic response, and that CPPD crystals could potentially be endocytosed and elicit changes through a MAPK-dependent pathway.
#explainpaper #med #MedMastodon
The Therapeutic Potential of Exogenous Adenosine Triphosphate (ATP) for Cartilage Tissue Engineering
authors : Jenna Usprech , Gavin Chu , Renata Giardini-Rosa , Kathleen Martin , and Stephen D. Waldman
Matrix Vesicle Plasma Cell Membrane Glycoprotein-1
Regulates Mineralization by Murine Osteoblastic
MC3T3 Cells
authors : KRISTEN JOHNSON,1 ALLISON MOFFA,1 YING CHEN,1 KENNETH PRITZKER,2
JAMES GODING,3 and ROBERT TERKELTAUB
The #Meta #Galactica thing is getting lots of attention for being a terrible bullshit generator, but an interesting tool that is maybe not so terrible is this, #ExplainPaper. It works better (more or less) because it's just an interface for asking GPT-3 to summarize highlighted text.
@CogSci @audsci
The best way to read research papers.
www.explainpaper.com