My first thought is that we can write a loop. We look over each element in `ti`, then use that element to find the last valid index in `t` (for ti=7.5 that would be 6), then use that index to look up the element in `pr`.
So first, I am going to convert `t`, `ti`, `pr` to NumPy arrays so we can use NumPy to help speed things along. After that
>>> t = np.insert(t, 0, 0)
>>> pr = np.insert(pr, 0, 1)
>>> shift_t = np.append(t, np.max(ti)+1)[1:]
>>> upper = (ti >= t[:, None]).astype(int)
>>> lower = (ti < shift_t[:, None]).astype(int)
>>> t_ind = upper * lower
>>> np.sum(t_ind * pr[:, None], axis=0)
The clever part (in my opinion) is the remainder. Line 4 creates a matrix of indicators where the columns are the individuals and rows are whether their value in `ti` was >= the corresponding `t`. I do a similar thing in line 5 but now < the shifted times. When these are multiplied together in 6, we get a matrix where the only non-zero value in a column corresponds to the final time the person was observed
It might be faster to convert `pr` and `t` to a dictionary (in Python) but this is still expensive as we need to loop. If there are lots of elements in `ti`, this can become far too slow. So the idea is to vectorize this procedure. The following is the best solution I’ve come up with at this point