Show newer

@obi So to make a long story short:
-"traditional" physics: experiments take very long time to set up, but you have strong theoretical foundations on which you can build (and potentially discover something new)
-biological physics: experiments are MUCH simpler to set up, but the data is also more difficult to interpret unequivocally

@obi Same in biology: if you work with model organisms like E. coli you have A LOT of literature out there on how the organism works, so you can start from a fairly good understanding of how your system works (even though there is still SO MUCH we don't know). However, if you study other less "mainstream" organisms that becomes more difficult

@obi And obviously, there's a lot of variability within both physics and biology. I've used the LHC as an example because it's one of the most widely known experiments, but there are hundreds of other projects out there that, even though maybe not as complex, still require the coordinated work of lots of people and take years to build (see for example the LIGO/VIRGO experiments for graviational waves)

@obi And also: if you work with a machine you know exactly how the machine is made and how it works, so you can understand if unexpected features in your data come from problems with the machine or actual new physics. In biology, on the other hand, we simply don't have a full understanding of how cells work, so when you see something unexpected it's much harder to understand if you're indeed seeing something new or you simply didn't know from the beginning how your system works. Does that make sense?

@obi One of the big differences, though, is also in the interpretation of data. Again, using the LHC as a comparison, we now have a very good knowledge of the physical model that describes how particles work (the Standard Model), and experiments are basically designed to try to find cracks in the model so that we can go further and discover new things. On the other hand, in biology you very rarely have a "unifying theory" so once you have the data it can be much harder to interpret

@obi I would say partly, yes. Again, take the Large Hadron Collider: it is an increadibly complex machine, and upgrading it requires the coordinated work of thousands of people with very different skillsets (e.g., cryogenic engineers for the parts that keep the magnets at temperatures close to absolute zero, IT engineers that have to build and maintain an infrastructure capable of storing a data flow of hundreds of gb per second). In my case, on the other hand, I just have to take cells out of a freezer/fridge and put them in a test tube (it's a little bit simplified, but this is basically what I do). Maybe I have to repeat the experiments in a few different conditions, but I can simply run the experiments at the same time

@obi Glad I showed you something you didn't know about! 😀

@obi yeah. I mean, in "traditional" physics we are at a point where in order to even keep up with the latest theory you need to spend YEARS studying the mathematical tools needed to handle them, and conversely you need YEARS of experience to be able to build and use the machines needed to verify the theories experimentally (think about the Large Hadron Collider: each upgrade takes years and requires the work of thousands of people with years of experience). In biology this problem simply does not exist. In my case, for example, I had to spend a few months in the lab learning how to do some measurements and then I was able to just pick up and start any experiment I wanted (and experiments take days, a few weeks at worst, instead of years)

@obi yeah I mean it's not like the mindset is not there at all. Lots of people that do the switch still only do only theoretical or experimental work. But there's a whole community of people that sits in the middle (me included)

@obi The situation is very similar to what was happening in quantum mechanics in the 1920s/1930s: lots of data and interesting phenomena that are observed, there's no really unifying theory to describe most of them and people work on both their theory and experiments (or viceversa on their experiments and the theories that explain them)

@obi but in the past few decades a lot of physicists have realized that there are A LOT of interesting problems to be studied in biology, and so lots of people are moving there, very often switching from theory to experiment

@obi and generally speaking it is pretty much unheard of that someone in a "traditional" branch of physics moves from theory to experiment or viceversa

@obi MUCH more common than what you would imagine, at least for the specific case of physicists going into biology. When I was studying physics in college the chasm between theory and experiment was deep and very entrenched in people's mind

Theoretical physicist by training but I work on biological problems, in particular regarding microbes and their ecology. I would ultimately like to understand the relationship between the physiology of individual bacterial species and the ecology of whole communities.

I started as a pure theoretician, but after my PhD I switched to also doing experiments so now I can repeatedly bang my head on something different than my laptop.

If I'm not in the lab I'm probably trying out new restaurants, walking my dalmatian Bruno or bingeing some show on Netflix.

Here goes!
I'm migrating from Twitter, let's see how this goes. Hopefully a good community of scientists will form also here on Mastodon!

Introduction toot coming soon

Qoto Mastodon

QOTO: Question Others to Teach Ourselves
An inclusive, Academic Freedom, instance
All cultures welcome.
Hate speech and harassment strictly forbidden.