"Structured cerebellar connectivity supports resilient pattern separation" Nguyen, Thomas et al. in @darbly's lab nature.com/articles/s41586-022

Spectacular work based on connectomic reconstruction from nanometre-resolution volume electron microscopy and computational modelling that contributes novel findings in cerebellar microcircuitry:

"both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks."

One of the two first authors, Logan Thomas @lathomas42 is on mastodon, as is the senior author Wei Lee @darbly. Welcome! And what a spectacular paper on . Those must be the prettiest Purkinje cell renderings since the century-old famous ones from Cajal. This time with synapses though!

@albertcardona Thank you for so kindly describing Tri Nguyen’s and @lathomas42’s paper. Indeed, Purkinje cells are amongst the most “elegant and luxurious” extracted out of our EM data.

Folks can see more for themselves here: github.com/htem/cb2_project_an

Sign in to participate in the conversation
Qoto Mastodon

QOTO: Question Others to Teach Ourselves
An inclusive, Academic Freedom, instance
All cultures welcome.
Hate speech and harassment strictly forbidden.