FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in meiotic DNA replication and recombination biorxiv.org/content/10.1101/20

FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in meiotic DNA replication and recombination

The formation of RAD51/DMC1 filaments on single-stranded (ss)DNAs, which is essential for homology search and strand exchange in DNA double-strand break (DSB) repair and for the protection of stalled DNA replication forks, is tightly regulated in time and space. FIGNL1 AAA+++ ATPase plays positive and negative roles in the RAD51-mediated recombination in human cells. However, the role of FIGNL1 in gametogenesis remains unsolved. Here, we characterized a germ-line-specific conditional knockout (cKO) mouse of FIGNL1. The Fignl1 cKO male mice showed defective chromosome synapsis and impaired meiotic DSB repair with the accumulation of RAD51/DMC1 on chromosomes in mid-meiotic prophase I, supporting a role of FIGNL1 in a post-assembly stage of RAD51/DMC1 filaments. Fignl1 cKO spermatocytes accumulate RAD51 and DMC1 ensembles on chromosomes not only in early meiotic prophase I but also in meiotic S-phase. These RAD51/DMC1 assemblies are independent of meiotic DSB formation. Finally, we showed that purified FIGNL1 dismantles RAD51 filament on double-stranded (ds)DNA as well as ssDNA. These results suggest a critical role of FIGNL1 to limit the uncontrolled assembly of RAD51 and DMC1 on native dsDNAs during the meiotic S-phase and meiotic prophase I. ### Competing Interest Statement The authors have declared no competing interest.

www.biorxiv.org
Sign in to participate in the conversation
Qoto Mastodon

QOTO: Question Others to Teach Ourselves
An inclusive, Academic Freedom, instance
All cultures welcome.
Hate speech and harassment strictly forbidden.