@3ammo No you dont... no matter what theory you have that explains why the light is asymmetric doesnt change the fact that symmetry of space will always be observed. Any theoretical experiment that can be verified experimentally, if you arbitrarily change light to be asymetric without any framework, it can be at random, ijust needs to preserve two-way consistency, if you do this the experimental nad theoretical results will **always** be the same as when the light is symmetric.

Therefore you do NOT need a theory to explain why the light is asymmetric in order to keep the symmetry of the observed space to be the same, the symmetry of the observed space is guaranteed to be preserved so long as the two-way speed of light is preserved. This is the very reason it is untestable in the first place.

Follow

@3ammo By the way on the wikipedia page on this topic which i already linked there is a section that shows the lorentz transformation generalized for asymetric c and should become immediately obvious why it would result in the same observed laws of physics as we would expect and see.

en.wikipedia.org/wiki/One-way_

Β· Β· 1 Β· 0 Β· 0

@3ammo Another very relevant quote from that wikipedia article which basically repeats what I keep telling you:

"Using generalizations of Lorentz transformations with anisotropic one-way speeds, Zhang and Anderson pointed out that all events and experimental results compatible with the Lorentz transformation and the isotropic one-way speed of light must also be compatible with transformations preserving two-way light speed constancy and isotropy, while allowing anisotropic one-way speeds."

Sign in to participate in the conversation
Qoto Mastodon

QOTO: Question Others to Teach Ourselves
An inclusive, Academic Freedom, instance
All cultures welcome.
Hate speech and harassment strictly forbidden.