Show newer

My Answer (spoilers) 

@Pat
You're good and
you're funny and
you actually helped me indirectly with that last 'jump'.

Thank you very much.

P.S.: I would never have imagined that math teaching could have been so good back in Nixon's days. 😉

My Answer (spoilers) 

@Pat
Okay lady... I'm puzzled now.

I've been trying to figure out how you got to the factorials formula.
Could not be empirically. (Could it?)

So, how did you get there? Please.

> These are insanely fudge like, gooey, and rich. They take less than 10 minutes to prep and less than 30 minutes to bake.

organicallyaddison.com/chocola

mc ☕ boosted

Here is the video of yesterdays dive with the **giant** Hawksbill sea turtle at 0:30 and again at 8:00 (the 8:00 is more interesting so watch it all the way through). If there is one video you check out it should be this one, I very rarely see sea turtles anywhere near this size, he must be close to 100 years old.

Video: video.qoto.org/videos/watch/8d

Dive stats:
connect.garmin.com/modern/acti

QT: video.qoto.org/videos/watch/8d

@freemo
I was going to use the formula "break a leg", but... I'll just wish you good luck.

My Answer (spoilers) 

@Pat
> Isn’t learning fun…

absolutely fascinating... For approximately 1% of the world population.

So, in spite of being "not a math gal" you got it.

Well, I'm impressed.
...
I never thought that Wikipedia would have such good math articles.

You also seem very comfortable discussing physics.

My Answer (spoilers) 

@Pat
> Of course you could just use the summation symbol in an equation or the sum function in mathlab or julia

That'll do, as long as I know how the sum function works. 😃

mc ☕ boosted
mc ☕ boosted

Symbolic regression is a thing!? Data making programs and math has been around awhile apparently.

arxiv.org/abs/1905.11481

mc ☕ boosted

@freemo
Congratulations.
Nice video. Not much color, tough.
2 questions:
- Those iron structures are part of some project to populate bare sand sea bottoms?
- Some sounds recorded seem those of airplanes. Is that place near an airport?

My Answer (spoilers) 

@Pat
Perhaps you can find some relation between the heights of the successive tet.s? (If youhave the time and he will to do it, of course.) :blobcatsweat:

My Answer (spoilers) 

@Pat
> My unconscious brain keeps interrupting my day with ideas on this…

OMG! What have I done? I'm sorry, really didn't mean to... 😅

> the solution should be the formula for the volume of a tetrahedron

Wouldn't it be nice if it could be so simple? 😃

> Do you already know what the general formula is?

Nope. But I trust you will find it. Some authors say that obsessive thinking is the start of the 'Eureka' moment. 🤭

(as )

```
2. Generalizing the function for any number of days:

```
function allgifts2(days)
dg = [] # daily gifts storage
for d in 1:days
d = sum(1:d) # daily gifts from day 1 to days
push!(dg, d) # storing each day gifts
end
print(sum(dg)) # showing total number of gifts in storage
end

# There are actually 13 days from 25 Dec to 6 Jan
# Let's add to the list Thirteen puzzlers puzzling
# > allgifts(13)
# 455
```
```

Did The Wise Men (Magi) Arrive 12 Days After Jesus’ Birth?
reasonsforhopejesus.com/did-th

**Happy Three Kings Day**

Show thread

"C'est la guerre qui fait fleurir les appliquées dans toutes sortes de domaines et y convertit provisoirement la quasi totalité des disponibles : ondes de choc, « surface waves in water of variable depth », calculs "hydrodynamiques" pour les bombes atomiques, dynamique des gaz, optimisation statistique des bombardements aériens, tir contre avions, recherche opérationnelle, etc. Certains mathématiciens de l'industrie commencent à dire (Thornton C. Fry, Bell Labs, 1941) que lesmathématiques "pures" ou "supérieures" ne sont, après tout, que des branches des mathématiques appliquées qui n'ont pas encore trouvé un vaste champ d'applications « and hence have not as yet, so to speak, emerged from obscurity » (12).
...
On fait alors appel, pour le Japon, aux services d'une équipe dirigée par un de Berkeley, Jerzy Neyman, qui applique à ce problème et à d'autres des méthodes qui le rendront célèbre après la guerre (13). En 1943, Richard Courant, s'appuyant sur la méthode d'approximation qu'il a utilisée en 1928 avec Friedrichs et Lewy pour établir l'existence de solutions d'équations aux dérivées partielles, explique à Hans Bethe, chef de la théorique à Los Alamos, comment calculer numériquement le comportement d'une sphère de comprimée par une onde de choc convergente (Nagasaki) ; de cette technique fortement poussée par von Neumann sortira l'intérêt de celui-ci pour le premier qu'il rencontrera l'année suivante , l'; c'est pour ce calcul que l'on a déjà commandé en 1943 des machines IBM à cartes perforées incomparablement moins rapides. ..."

, , armement by Roger Godement (pdf)
rogergodement.com/gallery/extr

@sprkwd@mas.to
Shouldn't it be 'Explore'?

My Answer (spoilers) 

@Pat
> I looked up “arithmetic progression” and this doesn’t fit the definition

Of course it does not fit... Did I say it was an arithmetic progression? OG, what was I thinking?!

Sorry. Now I'm focused. It's just a triangular numbers sequence with accumulation of all previous results.

My Answer (spoilers) 

@Pat
Apparently this is the Unix sysadmin way, not using any shell math features ;)

```
for i in `seq 1 12`; do for j in `seq 1 $i`; do head -c $j /dev/zero; done; done | wc -c

```

Show older
Qoto Mastodon

QOTO: Question Others to Teach Ourselves
An inclusive, Academic Freedom, instance
All cultures welcome.
Hate speech and harassment strictly forbidden.